Most of the anaerobic chemolithotrophs that have been discovered are members of what domain?

References

Akerman, N. H., Price, R. E., Pichler, T. & Amend, J. P. (2011). Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system. Geobiology 9, 436445.CrossRefGoogle Scholar

Claassens, N. J., Sousa, D. Z., dos Santos, V. A. P. M., de Vos, W. M. & van der Oost, J. (2016). Harnessing the power of microbial autotrophy. Nature Reviews Microbiology 14, 692706.CrossRefGoogle ScholarPubMed

Gadd, G. M., Semple, K. T. & Lappin-Scott, H. M. (2005). Micro-organisms and Earth Systems: Advances in Geomicrobiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Maden, B. E. H. (1995). No soup for starters? Autotrophy and the origins of metabolism. Trends in Biochemical Sciences 20, 337341.CrossRefGoogle Scholar

Stevens, T. O. (1997). Lithoautotrophy in the subsurface. FEMS Microbiology Reviews 20, 327337.CrossRefGoogle Scholar

Wood, A. P., Aurikko, J. P. & Kelly, D. P. (2004). A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiology Reviews 28, 335352.CrossRefGoogle ScholarPubMed

Elbehti, A., Brasseur, G. & Lemesle-Meunier, D. (2000). First evidence for existence of an uphill electron transfer through the bc1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. Journal of Bacteriology 182, 36023606.CrossRefGoogle Scholar

Jin, Q. & Bethke, C. M. (2003). A new rate law describing microbial respiration. Applied and Environmental Microbiology 69, 23402348.CrossRefGoogle ScholarPubMed

Chen, J., Zheng, J., Li, Y., Hao, H.-h. & Chen, J.-m. (2015). Characteristics of a novel thermophilic heterotrophic bacterium, Anoxybacillus contaminans HA, for nitrification–aerobic denitrification. Applied Microbiology and Biotechnology 99, 1069510702.CrossRefGoogle ScholarPubMed

Costa, E., Perez, J. & Kreft, J. U. (2006). Why is metabolic labour divided in nitrification? Trends in Microbiology 14, 213219.CrossRefGoogle ScholarPubMed

Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P. H. & Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature 528, 504509.CrossRefGoogle ScholarPubMed

Kerou, M., Offre, P., Valledor, L., Abby, S. S., Melcher, M., Nagler, M., Weckwerth, W. & Schleper, C. (2016). Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the USA 113, 79377946.CrossRefGoogle ScholarPubMed

Kim, J.-G., Park, S.-J., Sinninghe Damsté, J. S., Schouten, S., Rijpstra, W. I. C., Jung, M.-Y., Kim, S.-J., Gwak, J.-H., Hong, H., Si, O.-J., Lee, S., Madsen, E. L. & Rhee, S.-K. (2016). Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proceedings of the National Academy of Sciences of the USA 113, 78887893.CrossRefGoogle ScholarPubMed

Koch, H., Galushko, A., Albertsen, M., Schintlmeister, A., Gruber-Dorninger, C., Lücker, S., Pelletier, E., Le Paslier, D., Spieck, E., Richter, A., Nielsen, P. H., Wagner, M. & Daims, H. (2014). Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 10521054.CrossRefGoogle ScholarPubMed

Nicol, G. W. & Schleper, C. (2006). Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends in Microbiology 14, 207212.CrossRefGoogle ScholarPubMed

Prosser, J. I. & Nicol, G. W. (2012). Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends in Microbiology 20, 523531.CrossRefGoogle Scholar

van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., Op den Camp, H. J. M., Kartal, B., Jetten, M. S. M. & Lücker, S. (2015). Complete nitrification by a single microorganism. Nature 528, 555559.CrossRefGoogle ScholarPubMed

Ye, R. W. & Thomas, S. M. (2001). Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology 4, 307312.CrossRefGoogle ScholarPubMed

Dopson, M. & Johnson, D. B. (2012). Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environmental Microbiology 14, 26202631.CrossRefGoogle ScholarPubMed

Friedrich, C. G. (1998). Physiology and genetics of sulfur-oxidizing bacteria. Advances in Microbial Physiology, 39, 235289.CrossRefGoogle ScholarPubMed

Ghosh, W. & Dam, B. (2009). Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiology Reviews 33, 9991043.CrossRefGoogle ScholarPubMed

Han, Y. & Perner, M. (2016). Sulfide consumption in Sulfurimonas denitrificans and heterologous expression of its three sulfide-quinone reductase homologs. Journal of Bacteriology 198, 12601267.CrossRefGoogle ScholarPubMed

Kelly, D. P. (1999). Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Archives of Microbiology 171, 219229.CrossRefGoogle Scholar

Liu, Y., Beer, L. L. & Whitman, W. B. (2012). Sulfur metabolism in archaea reveals novel processes. Environmental Microbiology 14, 26322644.CrossRefGoogle ScholarPubMed

Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N. & Nielsen, L. P. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218221.CrossRefGoogle ScholarPubMed

Rother, D., Ringk, J. & Friedrich, C. G. (2008). Sulfur oxidation of Paracoccus pantotrophus: the sulfur-binding protein SoxYZ is the target of the periplasmic thiol-disulfide oxidoreductase SoxS. Microbiology 154, 1980 –1988.CrossRefGoogle ScholarPubMed

Salman, V., Bailey, J. & Teske, A. (2013). Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie van Leeuwenhoek 104, 169186.CrossRefGoogle ScholarPubMed

Amouric, A., Brochier-Armanet, C., Johnson, D. B., Bonnefoy, V. & Hallberg, K. B. (2011). Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology 157, 111122.CrossRefGoogle ScholarPubMed

Bird, L. J., Bonnefoy, V. & Newman, D. K. (2011). Bioenergetic challenges of microbial iron metabolisms. Trends in Microbiology 19, 330340.CrossRefGoogle ScholarPubMed

Bonnefoy, V. & Holmes, D. S. (2012). Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environmental Microbiology 14, 15971611.CrossRefGoogle ScholarPubMed

Castelle, C., Guiral, M., Malarte, G., Ledgham, F., Leroy, G., Brugna, M. & Giudici-Orticoni, M.-T. (2008). A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. Journal of Biological Chemistry 283, 2580325811.CrossRefGoogle ScholarPubMed

Emerson, D., Fleming, E. J. & McBeth, J. M. (2010). Iron-oxidizing bacteria: an environmental and genomic perspective. Annual Review of Microbiology 64, 561583.CrossRefGoogle ScholarPubMed

Hedrich, S., Schlömann, M. & Johnson, D. B. (2011). The iron-oxidizing proteobacteria. Microbiology 157, 15511564.CrossRefGoogle ScholarPubMed

Summers, Z. M., Gralnick, J. A. & Bond, D. R. (2013). Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. mBio 4, 00420–12.CrossRefGoogle ScholarPubMed

Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. (2013). Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proceedings of the National Academy of Sciences of the USA 110, 330335.CrossRefGoogle ScholarPubMed

Fritsch, J., Lenz, O. & Friedrich, B. (2013). Structure, function and biosynthesis of O2-tolerant hydrogenases. Nature Reviews Microbiology 11, 106114.CrossRefGoogle Scholar

Greening, C., Constant, P., Hards, K., Morales, S. E., Oakeshott, J. G., Russell, R. J., Taylor, M. C., Berney, M., Conrad, R. & Cook, G. M. (2015). Atmospheric hydrogen scavenging: from enzymes to ecosystems. Applied and Environmental Microbiology 81, 11901199.CrossRefGoogle Scholar

Kim, Y. & Park, S. (2012). Microbiology and genetics of CO utilization in mycobacteria. Antonie van Leeuwenhoek 101, 685700.CrossRefGoogle ScholarPubMed

Koch, H., Galushko, A., Albertsen, M., Schintlmeister, A., Gruber-Dorninger, C., Lücker, S., Pelletier, E., Le Paslier, D., Spieck, E., Richter, A., Nielsen, P. H., Wagner, M. & Daims, H. (2014). Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 10521054.CrossRefGoogle ScholarPubMed

Kuhns, L. G., Benoit, S. L., Bayyareddy, K., Johnson, D., Orlando, R., Evans, A. L., Waldrop, G. L. & Maier, R. J. (2016). Carbon fixation driven by molecular hydrogen results in chemolithoautotrophically enhanced growth of Helicobacter pylori. Journal of Bacteriology 198, 14231428.CrossRefGoogle ScholarPubMed

Oh, J.-I., Park, S.-J., Shin, S.-J., Ko, I.-J., Han, S. J., Park, S. W., Song, T. & Kim, Y. M. (2010). Identification of trans- and cis-control elements involved in regulation of the carbon monoxide dehydrogenase genes in Mycobacterium sp. strain JC1 DSM 3803. Journal of Bacteriology 192, 39253933.CrossRefGoogle ScholarPubMed

Parkin, A. & Sargent, F. (2012). The hows and whys of aerobic H2 metabolism. Current Opinion in Chemical Biology 16, 2634.CrossRefGoogle ScholarPubMed

Vignais, P. M. & Billoud, B. (2007). Occurrence, classification, and biological function of hydrogenases:  an overview. Chemical Reviews 107, 42064272.CrossRefGoogle ScholarPubMed

Anderson, C. R., Johnson, H. A., Caputo, N., Davis, R. E., Torpey, J. W. & Tebo, B. M. (2009). Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21. Applied and Environmental Microbiology 75, 41304138.CrossRefGoogle ScholarPubMed

Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609643.CrossRefGoogle ScholarPubMed

Heinrich-Salmeron, A., Cordi, A., Brochier-Armanet, C., Halter, D., Pagnout, C., Abbaszadeh-fard, E., Montaut, D., Seby, F., Bertin, P. N., Bauda, P. & Arsene-Ploetze, F. (2011). Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes. Applied and Environmental Microbiology 77, 46854692.CrossRefGoogle ScholarPubMed

Johnson, H. & Tebo, B. (2008). In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation. Archives of Microbiology 189, 5969.CrossRefGoogle ScholarPubMed

Li, J., Wang, Q., Oremland, R. S., Kulp, T. R., Rensing, C. & Wang, G. (2016). Microbial antimony biogeochemistry: enzymes, regulation, and related metabolic pathways. Applied and Environmental Microbiology 82, 54825495.CrossRefGoogle ScholarPubMed

Wang, Q., Warelow, T. P., Kang, Y.-S., Romano, C., Osborne, T. H., Lehr, C. R., Bothner, B., McDermott, T. R., Santini, J. M. & Wang, G. (2015). Arsenite oxidase also functions as an antimonite oxidase. Applied and Environmental Microbiology 81, 19591965.CrossRefGoogle ScholarPubMed

Zargar, K., Conrad, A., Bernick, D. L., Lowe, T. M., Stolc, V., Hoeft, S., Oremland, R. S., Stolz, J. & Saltikov, C. W. (2012). ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environmental Microbiology 14, 16351645.CrossRefGoogle ScholarPubMed

Berg, I. A. (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Applied and Environmental Microbiology 77, 1925 –1936.CrossRefGoogle ScholarPubMed

Huegler, M., Huber, H., Stetter, K. O. & Fuchs, G. (2003). Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Archives of Microbiology 179, 160173.CrossRefGoogle Scholar

Jennings, R. d. M., Moran, J. J., Jay, Z. J., Beam, J. P., Whitmore, L. M., Kozubal, M. A., Kreuzer, H. W. & Inskeep, W. P. (2017). Integration of metagenomic and stable carbon isotope evidence reveals the extent and mechanisms of carbon dioxide fixation in high-temperature microbial communities. Frontiers in Microbiology 8, 88.CrossRefGoogle ScholarPubMed

Montoya, L., Celis, L., Razo-Flores, E. & Alpuche-Solís, Á. (2012). Distribution of CO2 fixation and acetate mineralization pathways in microorganisms from extremophilic anaerobic biotopes. Extremophiles 16, 805817.CrossRefGoogle Scholar

Cannon, G. C., Baker, S. H., Soyer, F., Johnson, D. R., Bradburne, C. E., Mehlman, J. L., Davies, P. S., Jiang, Q. L., Heinhorst, S. & Shively, J. M. (2003). Organization of carboxysome genes in the thiobacilli. Current Microbiology 46, 115119.CrossRefGoogle ScholarPubMed

Dangel, A. W. & Tabita, F. R. (2015). CbbR, the master regulator for microbial carbon dioxide fixation. Journal of Bacteriology 197, 34883498.CrossRefGoogle ScholarPubMed

Finn, M. W. & Tabita, F. R. (2004). Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic Archaea. Journal of Bacteriology 186, 63606366.CrossRefGoogle ScholarPubMed

Savage, D. F., Afonso, B., Chen, A. H. & Silver, P. A. (2010). Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327, 12581261.CrossRefGoogle ScholarPubMed

Tabita, F. R., Hanson, T. E., Li, H., Satagopan, S., Singh, J. & Chan, S. (2007). Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiology and Molecular Biology Reviews 71, 576599.CrossRefGoogle ScholarPubMed

Witte, B., John, D., Wawrik, B., Paul, J. H., Dayan, D. & Tabita, F. R. (2010). Functional prokaryotic RubisCO from an oceanic metagenomic library. Applied and Environmental Microbiology 76, 29973003.CrossRefGoogle ScholarPubMed

Hugler, M., Huber, H., Molyneaux, S. J., Vetriani, C. & Sievert, S. M. (2007). Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae : evidence for two ways of citrate cleavage. Environmental Microbiology 9, 8192.CrossRefGoogle ScholarPubMed

Hugler, M., Wirsen, C. O., Fuchs, G., Taylor, C. D. & Sievert, S. M. (2005). Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the ε-subdivision of Proteobacteria. Journal of Bacteriology 187, 30203027.CrossRefGoogle ScholarPubMed

Miura, A., Kameya, M., Arai, H., Ishii, M. & Igarashi, Y. (2008). A soluble NADH-dependent fumarate reductase in the reductive tricarboxylic acid cycle of Hydrogenobacter thermophilus TK-6. Journal of Bacteriology 190, 71707177.CrossRefGoogle ScholarPubMed

Liew, F., Henstra, A. M., Winzer, K., Köpke, M., Simpson, S. D. & Minton, N. P. (2016). Insights into CO2 fixation pathway of Clostridium autoethanogenum by targeted mutagenesis. mBio 7, 00427–16.CrossRefGoogle ScholarPubMed

Russell, M. J. & Martin, W. (2004). The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences 29, 358363.CrossRefGoogle ScholarPubMed

Friedmann, S., Alber, B. E. & Fuchs, G. (2006). Properties of succinyl-coenzyme A:D-citramalate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. Journal of Bacteriology 188, 64606468.CrossRefGoogle ScholarPubMed

Herter, S., Fuchs, G., Bacher, A. & Eisenreich, W. (2002). A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. Journal of Biological Chemistry 277, 2027720283.CrossRefGoogle ScholarPubMed

Zarzycki, J., Brecht, V., Mueller, M. & Fuchs, G. (2009). Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proceedings of the National Academy of Sciences of the USA 106, 2131721322.CrossRefGoogle ScholarPubMed

Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. (2008). A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318, 17321733.Google Scholar

Berg, I. A., Ramos-Vera, W. H., Petri, A., Huber, H. & Fuchs, G. (2010). Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota. Microbiology 156, 256269.CrossRefGoogle ScholarPubMed

Jennings, R. d. M., Moran, J. J., Jay, Z. J., Beam, J. P., Whitmore, L. M., Kozubal, M. A., Kreuzer, H. W. & Inskeep, W. P. (2017). Integration of metagenomic and stable carbon isotope evidence reveals the extent and mechanisms of carbon dioxide fixation in high-temperature microbial communities. Frontiers in Microbiology 8, 88.CrossRefGoogle ScholarPubMed

Ramos-Vera, W. H., Labonte, V., Weiss, M., Pauly, J. & Fuchs, G. (2010). Regulation of autotrophic CO2 fixation in the archaeon Thermoproteus neutrophilus. Journal of Bacteriology 192, 53295340.CrossRefGoogle ScholarPubMed

What type of organism is present in Chemolithotrophic microbial mats quizlet?

Microbial mats containing chemolithotrophic bacteria have filamentous sulfur-oxidizing bacteria.

Which of the following can be used as terminal electron acceptors by Chemolithotrophs?

Anaerobic chemolithotrophs oxidize hydrogen gas using CO2 as a terminal electron acceptor.. Aerobic chemolithotrophs oxidize sulfur compounds as energy sources and use O2 as a terminal electron acceptor.

Which of the following can be used to distinguish between members of the genus Bacillus and Clostridium?

Clostridium can be differentiated from the also Endspore forming genus Bacillus by its obligate anaerobic growth, the shape of endospores and the lack of catalase.

Which of the following are diseases caused by member of the Chlamydia and Chlamydophila species?

Chlamydia trachomatis genital infection Urethritis, cervicitis and proctitis.

Toplist

Neuester Beitrag

Stichworte