Are transmembrane proteins that regulate cellular processes such as cell proliferation and differentiation the extracellular domains of?

1. Fagerberg L, Jonasson K, von Heijne G, Uhlen M, Berglund L. Prediction of the human membrane proteome. Proteomics. (2010) 10:1141–9. 10.1002/pmic.200900258 [PubMed] [CrossRef] [Google Scholar]

2. Stevens TJ, Arkin IT. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins. (2000) 39:417–20. 10.1002/(SICI)1097-0134(20000601)39:4<417::AID-PROT140>3.0.CO;2-Y [PubMed] [CrossRef] [Google Scholar]

3. Wu H. Higher-order assemblies in a new paradigm of signal transduction. Cell. (2013) 153:287–92. 10.1016/j.cell.2013.03.013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Moore DT, Berger BW, DeGrado WF. Protein-protein interactions in the membrane: sequence, structural, biological motifs. Structure. (2008) 16:991–1001. 10.1016/j.str.2008.05.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Matthews EE, Zoonens M, Engelman DM. Dynamic helix interactions in transmembrane signaling. Cell. (2006) 127:447–50. 10.1016/j.cell.2006.10.016 [PubMed] [CrossRef] [Google Scholar]

6. Hubert P, Sawma P, Duneau JP, Khao J, Henin J, Bagnard, et al.. Single-spanning transmembrane domains in cell growth and cell-cell interactions: more than meets the eye? Cell Adh Migr. (2010) 4:313–24. 10.4161/cam.4.2.12430 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Sawma P, Roth L, Blanchard C, Bagnard D, Cremel G, Bouveret E, et al.. Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling. J Mol Biol. (2014) 426:4099–111. 10.1016/j.jmb.2014.10.007 [PubMed] [CrossRef] [Google Scholar]

8. Westerfield JM, Barrera FN. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. J Biol Chem. (2019) 295:1792–814. 10.1074/jbc.REV119.009457 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Ahmed S, Sami A, Xiang J. HER2-directed therapy: current treatment options for HER2-positive breast cancer. Breast Cancer. (2015) 22:101–16. 10.1007/s12282-015-0587-x [PubMed] [CrossRef] [Google Scholar]

10. Lacal PM, Graziani G. Therapeutic implication of vascular endothelial growth factor receptor-1 (VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacol Res. (2018) 136:97–107. 10.1016/j.phrs.2018.08.023 [PubMed] [CrossRef] [Google Scholar]

11. Karachaliou N, Codony-Servat J, Bracht JWP, Ito M, Filipska M, Pedraz C, et al.. Characterising acquired resistance to erlotinib in non-small cell lung cancer patients. Expert Rev Respir Med. (2019) 13:1019–28. 10.1080/17476348.2019.1656068 [PubMed] [CrossRef] [Google Scholar]

12. Rhea IB, Oliveira GH. Cardiotoxicity of novel targeted chemotherapeutic agents. Curr Treat Options Cardiovasc Med. (2018) 20:53. 10.1007/s11936-018-0649-4 [PubMed] [CrossRef] [Google Scholar]

13. Appert-Collin A, Hubert P, Cremel G, Bennasroune A. Role of ErbB receptors in cancer cell migration and invasion. Front Pharmacol. (2015) 6:283. 10.3389/fphar.2015.00283 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. (1990). 61:203–12. 10.1016/0092-867490801-K [PubMed] [CrossRef] [Google Scholar]

15. Tsai CJ, Nussinov R. Emerging allosteric mechanism of EGFR activation in physiological and pathological contexts. Biophys J. (2019) 117:5–13. 10.1016/j.bpj.2019.05.021 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Bordag N, Keller S. Alpha-helical transmembrane peptides: a “divide and conquer” approach to membrane proteins. Chem Phys Lipids. (2010) 163:1–26. 10.1016/j.chemphyslip.2009.07.009 [PubMed] [CrossRef] [Google Scholar]

17. Bargmann CI, Hung MC, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell. (1986) 45:649–57. 10.1016/0092-867490779-8 [PubMed] [CrossRef] [Google Scholar]

18. Gardin A, Auzan C, Clauser E, Malherbe T, Aunis D, Cremel G, et al.. Substitution of the insulin receptor transmembrane domain with that of glycophorin A inhibits insulin action. FASEB J. (1999) 13:1347–57. 10.1096/fasebj.13.11.1347 [PubMed] [CrossRef] [Google Scholar]

19. Tanner KG, Kyte J. Dimerization of the extracellular domain of the receptor for epidermal growth factor containing the membrane-spanning segment in response to treatment with epidermal growth factor. J Biol Chem. (1999) 274:35985–90. 10.1074/jbc.274.50.35985 [PubMed] [CrossRef] [Google Scholar]

20. Gerber D, Sal-Man N, Shai Y. Structural adaptation of the glycophorin A transmembrane homodimer to D-amino acid modifications. J Mol Biol. (2004) 339:243–50. 10.1016/j.jmb.2004.03.004 [PubMed] [CrossRef] [Google Scholar]

21. Mendrola JM, Berger MB, King MC, Lemmon MA. The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem. (2002) 277:4704–12. 10.1074/jbc.M108681200 [PubMed] [CrossRef] [Google Scholar]

22. Cymer F, Schneider D. A single glutamate residue controls the oligomerization, function, and stability of the aquaglyceroporin GlpF. Biochemistry. (2010) 49:279–86. 10.1021/bi901660t [PubMed] [CrossRef] [Google Scholar]

23. Russ WP, Engelman DM. The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol. (2000) 296:911–9. 10.1006/jmbi.1999.3489 [PubMed] [CrossRef] [Google Scholar]

24. Lofts FJ, Hurst HC, Sternberg MJ, Gullick WJ. Specific short transmembrane sequences can inhibit transformation by the mutant neu growth factor receptor in vitro and in vivo. Oncogene. (1993) 8:2813–20. [PubMed] [Google Scholar]

25. Bennasroune A, Fickova M, Gardin A, Dirrig-Grosch S, Aunis D, Cremel G, et al.. Transmembrane peptides as inhibitors of ErbB receptor signaling. Mol Biol Cell. (2004) 15:3464–74. 10.1091/mbc.e03-10-0753 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Bennasroune A, Gardin A, Auzan C, Clauser E, Dirrig-Grosch S, Meira M, et al.. Inhibition by transmembrane peptides of chimeric insulin receptors. Cell Mol Life Sci. (2005) 62:2124–31. 10.1007/s00018-005-5226-9 [PubMed] [CrossRef] [Google Scholar]

27. Arpel A, Sawma P, Spenle C, Fritz J, Meyer L, Garnier N, et al.. Transmembrane domain targeting peptide antagonizing ErbB2/Neu inhibits breast tumor growth and metastasis. Cell Rep. (2014) 8:1714–21. 10.1016/j.celrep.2014.07.044 [PubMed] [CrossRef] [Google Scholar]

28. Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, et al.. The semaphorins and their receptors as modulators of tumor progression. Drug Resist Updat. (2016) 29:1–12. 10.1016/j.drup.2016.08.001 [PubMed] [CrossRef] [Google Scholar]

29. Roth L, Nasarre C, Dirrig-Grosch S, Aunis D, Cremel G, Hubert P, et al.. Transmembrane domain interactions control biological functions of neuropilin-1. Mol Biol Cell. (2008) 19:646–54. 10.1091/mbc.e07-06-0625 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Nasarre C, Roth M, Jacob L, Roth L, Koncina E, Thien A, et al.. Peptide-based interference of the transmembrane domain of neuropilin-1 inhibits glioma growth in vivo. Oncogene. (2010) 29:2381–92. 10.1038/onc.2010.9 [PubMed] [CrossRef] [Google Scholar]

31. Arpel A, Gamper C, Spenle C, Fernandez A, Jacob L, Baumlin N, et al.. Inhibition of primary breast tumor growth and metastasis using a neuropilin-1 transmembrane domain interfering peptide. Oncotarget. (2016) 7:54723–32. 10.18632/oncotarget.10101 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Jacob L, Sawma P, Garnier N, Meyer LA, Fritz J, Hussenet T, et al.. Inhibition of PlexA1-mediated brain tumor growth and tumor-associated angiogenesis using a transmembrane domain targeting peptide. Oncotarget. (2016) 7:57851–65. 10.18632/oncotarget.11072 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Biname F, Pham-Van LD, Spenle C, Jolivel V, Birmpili D, Meyer LA, et al.. Disruption of Sema3A/Plexin-A1 inhibitory signalling in oligodendrocytes as a therapeutic strategy to promote remyelination. EMBO Mol Med. (2019) 11:e10378. 10.15252/emmm.201910378 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Gamper C, Spenle C, Bosca S, van der Heyden M, Erhardt M, Orend G, et al.. Functionalized tobacco mosaic virus coat protein monomers and oligomers as nanocarriers for anti-cancer peptides. Cancers. (2019) 11:1609. 10.3390/cancers11101609 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Nguyen VP, Palanikumar L, Kennel SJ, Alves DS, Ye Y, Wall JS, et al.. Mechanistic insights into the pH-dependent membrane peptide ATRAM. J Control Release. (2019) 298:142–153. 10.1016/j.jconrel.2019.02.010 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Duca L, Lambert E, Debret R, Rothhut B, Blanchevoye C, Delacoux F, et al.. Elastin peptides activate extracellular signal-regulated kinase 1/2 via a Ras-independent mechanism requiring both p110gamma/Raf-1 and protein kinase A/B-Raf signaling in human skin fibroblasts. Mol Pharmacol. (2005) 67:1315–24. 10.1124/mol.104.002725 [PubMed] [CrossRef] [Google Scholar]

37. Lapis K, Timar J. Role of elastin-matrix interactions in tumor progression. Semin Cancer Biol. (2002) 12:209–17. 10.1016/S1044-579X00024-X [PubMed] [CrossRef] [Google Scholar]

38. Hinek A, Pshezhetsky AV, von Itzstein M, Starcher B. Lysosomal sialidase (neuraminidase-1) is targeted to the cell surface in a multiprotein complex that facilitates elastic fiber assembly. J Biol Chem. (2006) 281:3698–710. 10.1074/jbc.M508736200 [PubMed] [CrossRef] [Google Scholar]

39. Monti E, Bonten E, D'Azzo A, Bresciani R, Venerando B, Borsani G, et al.. Sialidases in vertebrates: a family of enzymes tailored for several cell functions. Adv Carbohydr Chem Biochem. (2010) 64:403–79. 10.1016/S0065-231864007-3 [PubMed] [CrossRef] [Google Scholar]

40. Giacopuzzi E, Bresciani R, Schauer R, Monti E, Borsani G. New insights on the sialidase protein family revealed by a phylogenetic analysis in metazoa. PLoS One. (2012) 7:e44193. 10.1371/journal.pone.0044193 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Salesse S, Odoul L, Chazee L, Garbar C, Duca L, Martiny L, et al.. Elastin molecular aging promotes MDA-MB-231 breast cancer cell invasiveness. FEBS Open Bio. (2018) 8:1395–404. 10.1002/2211-5463.12455 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Nicoloff G, Deliiyski T, Nikolov A. Detection of serum collagen collagen type IV and elastin derived peptides in patients with breast cancers. Diabetol Croatica. (2010) 39:83–93. [Google Scholar]

43. Thulasiraman P, Kerr K, McAlister K, Hardisty S, Wistner A, McCullough I. Neuraminidase 1 regulates proliferation, apoptosis and the expression of Cadherins in mammary carcinoma cells. Mol Cell Biochem. (2019) 462:207–15. 10.1007/s11010-019-03623-7 [PubMed] [CrossRef] [Google Scholar]

44. Haxho F, Allison S, Alghamdi F, Brodhagen L, Kuta VE, Abdulkhalek S, et al.. Oseltamivir phosphate monotherapy ablates tumor neovascularization, growth, and metastasis in mouse model of human triple-negative breast adenocarcinoma. Breast Cancer (Dove Med Press). (2014) 6:191–203. 10.2147/BCTT.S74663 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Pocza P, Suli-Vargha H, Darvas Z, Falus A. Locally generated VGVAPG and VAPG elastin-derived peptides amplify melanoma invasion via the galectin-3 receptor. Int J Cancer. (2008) 122:1972–80. 10.1002/ijc.23296 [PubMed] [CrossRef] [Google Scholar]

46. Ntayi C, Labrousse AL, Debret R, Birembaut P, Bellon G, Antonicelli F, et al.. Elastin-derived peptides upregulate matrix metalloproteinase-2-mediated melanoma cell invasion through elastin-binding protein. J Invest Dermatol. (2004) 122:256–65. 10.1046/j.0022-202X.2004.22228.x [PubMed] [CrossRef] [Google Scholar]

47. Hornebeck W, Robinet A, Duca L, Antonicelli F, Wallach J, Bellon G. The elastin connection and melanoma progression. Anticancer Res. (2005) 25:2617–25. [PubMed] [Google Scholar]

48. Hou G, Liu G, Yang Y, Li Y, Yuan S, Zhao L, et al.. Neuraminidase 1 (NEU1) promotes proliferation and migration as a diagnostic and prognostic biomarker of hepatocellular carcinoma. Oncotarget. (2016) 7:64957–66. 10.18632/oncotarget.11778 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Ren LR, Zhang LP, Huang SY, Zhu YF, Li WJ, Fang SY, et al.. Effects of sialidase NEU1 siRNA on proliferation, apoptosis, and invasion in human ovarian cancer. Mol Cell Biochem. (2016) 411:213–9. 10.1007/s11010-015-2583-z [PubMed] [CrossRef] [Google Scholar]

50. Maurice P, Baud S, Bocharova OV, Bocharov EV, Kuznetsov AS, Kawecki C, et al.. New insights into molecular organization of human neuraminidase-1: transmembrane topology and dimerization ability. Sci Rep. (2016) 6:38363. 10.1038/srep38363 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Shrivastava A, Radziejewski C, Campbell E, Kovac L, McGlynn M, Ryan TE, et al.. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell. (1997) 1:25–34. 10.1016/S1097-276580004-0 [PubMed] [CrossRef] [Google Scholar]

52. Vogel W, Gish GD, Alves F, Pawson T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell. (1997) 1:13–23. 10.1016/S1097-276580003-9 [PubMed] [CrossRef] [Google Scholar]

53. Nemoto T, Ohashi K, Akashi T, Johnson JD, Hirokawa K. Overexpression of protein tyrosine kinases in human esophageal cancer. Pathobiology. (1997) 65:195–203. 10.1159/000164123 [PubMed] [CrossRef] [Google Scholar]

54. Xie R, Wang X, Qi G, Wu Z, Wei R, Li P, et al.. DDR1 enhances invasion and metastasis of gastric cancer via epithelial-mesenchymal transition. Tumour Biol. (2016) 37:12049–59. 10.1007/s13277-016-5070-6 [PubMed] [CrossRef] [Google Scholar]

55. Yamanaka R, Arao T, Yajima N, Tsuchiya N, Homma J, Tanaka R, et al.. Identification of expressed genes characterizing long-term survival in malignant glioma patients. Oncogene. (2006) 25:5994–6002. 10.1038/sj.onc.1209585 [PubMed] [CrossRef] [Google Scholar]

56. Malaguarnera R, Nicolosi ML, Sacco A, Morcavallo A, Vella V, Voci C, et al.. Novel cross talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses. Oncotarget. (2015) 6:16084–105. 10.18632/oncotarget.3177 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Xiao Q, Jiang Y, Liu Q, Yue J, Liu C, Zhao X, et al.. Minor type IV collagen α5 chain promotes cancer progression through discoidin domain receptor-1. PLoS Genet. (2015) 11:e1005249. 10.1371/journal.pgen.1005249 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Agarwal G, Smith AW, Jones B. Discoidin domain receptors: micro insights into macro assemblies. Biochim Biophys Acta Mol Cell Res. (2019) 1866:118496. 10.1016/j.bbamcr.2019.06.010 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Coelho NM, Wang A, McCulloch CA. Discoidin domain receptor 1 interactions with myosin motors contribute to collagen remodeling and tissue fibrosis. Biochim Biophys Acta Mol Cell Res. (2019) 1866:118510. 10.1016/j.bbamcr.2019.07.005 [PubMed] [CrossRef] [Google Scholar]

60. Juskaite V, Corcoran DS, Leitinger B. Collagen induces activation of DDR1 through lateral dimer association and phosphorylation between dimers. Elife. (2017) 6:e25716. 10.7554/eLife.25716 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Mihai C, Chotani M, Elton TS, Agarwal G. Mapping of DDR1 distribution and oligomerization on the cell surface by FRET microscopy. J Mol Biol. (2009) 385:432–45. 10.1016/j.jmb.2008.10.067 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Noordeen NA, Carafoli F, Hohenester E, Horton MA, Leitinger B. A transmembrane leucine zipper is required for activation of the dimeric receptor tyrosine kinase DDR1. J Biol Chem. (2006) 281:22744–51. 10.1074/jbc.M603233200 [PubMed] [CrossRef] [Google Scholar]

63. Xu H, Abe T, Liu JK, Zalivina I, Hohenester E, Leitinger B. Normal activation of discoidin domain receptor 1 mutants with disulfide cross-links, insertions, or deletions in the extracellular juxtamembrane region: mechanistic implications. J Biol Chem. (2014) 289:13565–74. 10.1074/jbc.M113.536144 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Finger C, Escher C, Schneider D. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci Signal. (2009) 2:ra56. 10.1126/scisignal.2000547 [PubMed] [CrossRef] [Google Scholar]

65. Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, et al.. A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem. (1996) 271:16384–92. 10.1074/jbc.271.27.16384 [PubMed] [CrossRef] [Google Scholar]

66. Harikumar KG, Pinon DI, Miller LJ. Transmembrane segment IV contributes a functionally important interface for oligomerization of the Class II G protein-coupled secretin receptor. J Biol Chem. (2007) 282:30363–72. 10.1074/jbc.M702325200 [PubMed] [CrossRef] [Google Scholar]

67. Gallo M, Navarro G, Franco R, Andreu D. A2A Receptor homodimer-disrupting sequence efficiently delivered by a protease-resistant, cyclic CPP vector. Int J Mol Sci. (2019) 20:4937. 10.3390/ijms20194937 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Borroto-Escuela DO, Rodriguez D, Romero-Fernandez W, Kapla J, Jaiteh M, Ranganathan A, et al.. Mapping the interface of a GPCR dimer: a structural model of the A2A adenosine and D2 dopamine receptor heteromer. Front Pharmacol. (2018) 9:829. 10.3389/fphar.2018.00829 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Bhat RR, Yadav P, Sahay D, Bhargava DK, Creighton CJ, Yazdanfard S, et al.. GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Res Treat. (2018) 170:279–92. 10.1007/s10549-018-4751-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Sawada Y, Kikugawa T, Iio H, Sakakibara I, Yoshida S, Ikedo A, et al. GPRC5A facilitates cell proliferation through cell cycle regulation and correlates with bone metastasis in prostate cancer. Int J Cancer. (2020) 46:1369–82. 10.1002/ijc.32554 [PubMed] [CrossRef] [Google Scholar]

What are transmembrane proteins also called?

Transmembrane protein (TP), also known as intact protein, is a type of membrane protein exists in the whole biofilm, that is, transmembrane proteins span from one side of the membrane to another side.

What are transmembrane proteins quizlet?

transmembrane proteins. -proteins that extend through the bilayer w/ part of their mass on either side. -are amphipathic. -hydrophobic parts (side chains) interact with hydrophobic tails of lipids. -hydrophilic parts are exposed on both sides of membrane.

What are the functional types of transmembrane proteins?

According to their their relationship with the bilayer, integral membrane protein can be classified two primary types: integral polytopic proteins and Integral monotopic proteins. Integral polytopic proteins are also known as “transmembrane proteins” which can span across the membrane at least once (Fig. 2).

What is the function of transmembrane proteins in the plasma membrane?

Only transmembrane proteins can function on both sides of the bilayer or transport molecules across it. Cell-surface receptors are transmembrane proteins that bind signal molecules in the extracellular space and generate different intracellular signals on the opposite side of the plasma membrane.