How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

Drug absorption is a pharmacokinetic parameter that refers to the way a drug is absorbed from a pharmaceutical formulation into the bloodstream.

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

Image Credit: By NOOMEANG / Shutterstock

Several factors can affect the absorption of a drug into the body. These include:

  • physicochemical properties (e.g. solubility)
  • drug formulation (e.g. tablets, capsules, solutions)
  • the route of administration (e.g. oral, buccal, sublingual, rectal, parenteral, topical, or inhaled)
  • the rate of gastric emptying

The main pharmacokinetic parameters for absorption include:

  • Absorption rate constant: absorption rate / amount of drug remaining to be absorbed
  • Bioavailability: amount of drug absorbed / drug dose

A drug must be solubilized in order to cross the semipermeable cell membranes to reach the systemic circulation. These biological barriers exist to selectively allow or inhibit the passage of native and foreign particles through them.

Absorption Type: Passive Diffusion

Passive diffusion involves the crossing of a pharmaceutical substance across a cell membrane from an area of high drug concentration, such as  in the gastrointestinal tract,  to an area of low drug concentration, such as in  the blood.

This is a passive process that does not require energy, and the rate of diffusion is directly proportional to the concentration gradient. Other factors influencing passive diffusion include:

  • the physicochemical properties of the drug, such as its:
    • lipid solubility
    • molecular size
    • degree of ionization
  • the absorptive surface area available to the drug.

In general, lipid-soluble drugs, and drugs composed of smaller molecules, cross the cell membrane more easily and are more likely to be absorbed by passive diffusion.

As most drugs are weak acids or bases, they exist in the form of an equilibrium between the ionized and un-ionized form in an aqueous environment, such as the gastrointestinal tract. The un-ionized form usually diffuses across the cell membrane more readily as it is more lipophilic. The ionized form, on the other hand, exhibits high electrical resistance and is less likely to diffuse across the membrane. The ratio of the un-ionized form depends on the environmental pH and the acid dissociation constant (pKa).

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

Immediate-release products allow drugs to dissolve with no delay or prolonging dissolution or absorption of the drug. - Image Credit: PNOIARSA / Shutterstock

Absorption Type: Facilitated Passive Diffusion

This refers to the passage of certain drugs across cell membranes according to the concentration gradient, but in association with specific substrate molecules which attach the drug molecule and diffuse across the membrane. This does not require energy.

Absorption Type: Active Transport

Active transport requires energy to facilitate the transport of drug molecules against a concentration gradient, which usually occurs at specific sites in the small intestine.

The majority of drugs that are absorbed via active transport share a similar structure with endogenous substances such as ions, vitamins, sugars and amino acids.

Absorption Type: Pinocytosis

Pinocytosis involves absorption of fluid or particles following their encapsulation by a cell. The membrane of the cells closes in around the pharmacological substance and fuses to form a complete vesicle, which later detaches and moves into the inside of the cell. This process also requires energy to occur.

Standard and Controlled Release Oral Administration

When a drug is taken orally, it must be able to survive the low pH and presence of potentially degrading enzymes in the gastrointestinal tract before it can be absorbed into the bloodstream. Some peptide drugs such as insulin cannot be given orally for this reason.

There are some drug formulations that manipulate the properties of the drug to control the process of absorption. These are referred to as controlled-release medications. These changes limit the degree of fluctuation of the drug concentration, so that the rate of absorption is slowed down and extended over a longer period of time.  

Other Types of Administration (Non-Oral)

Drugs administered via intravenous (IV) injection or infusion do not need to be absorbed, as they are delivered directly into the bloodstream. However, there are several other types of non-oral administration routes that must be absorbed through cell membranes to reach the systemic circulation. These include buccal, sublingual, intramuscular, subcutaneous, rectal, topical, transdermal and inhaled.

Pharmacokinetics Drug Absorption Video

Pharmacokinetics 2 - Absorption

References

  • http://www.msdmanuals.com/professional/clinical-pharmacology/pharmacokinetics/drug-absorption
  • http://dmd.aspetjournals.org/content/31/12/1507.long
  • http://www.codental.uobaghdad.edu.iq/uploads/lectures/Pharma%20lectures/2%20Pharmacokinetics%20finishing%20with%20bioavailibility.pdf

Further Reading

  • All Pharmacology Content
  • Pharmacology
  • What is in Silico?
  • Drug Distribution
  • Drug Excretion / Elimination

Last Updated: Jun 19, 2019

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

Written by

Yolanda Smith

Yolanda graduated with a Bachelor of Pharmacy at the University of South Australia and has experience working in both Australia and Italy. She is passionate about how medicine, diet and lifestyle affect our health and enjoys helping people understand this. In her spare time she loves to explore the world and learn about new cultures and languages.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Smith, Yolanda. (2019, June 19). What is Drug Absorption?. News-Medical. Retrieved on November 23, 2022 from https://www.news-medical.net/health/What-is-Drug-Absorption.aspx.

  • MLA

    Smith, Yolanda. "What is Drug Absorption?". News-Medical. 23 November 2022. <https://www.news-medical.net/health/What-is-Drug-Absorption.aspx>.

  • Chicago

    Smith, Yolanda. "What is Drug Absorption?". News-Medical. https://www.news-medical.net/health/What-is-Drug-Absorption.aspx. (accessed November 23, 2022).

  • Harvard

    Smith, Yolanda. 2019. What is Drug Absorption?. News-Medical, viewed 23 November 2022, https://www.news-medical.net/health/What-is-Drug-Absorption.aspx.

Suggested Reading

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

How quickly and completely a drug is absorbed into the bloodstream affects which of the following?

What happens when a drug is absorbed into the bloodstream?

The most common mechanism of absorption for drugs is passive diffusion. This process can be explained through the Fick law of diffusion, in which the drug molecule moves according to the concentration gradient from a higher drug concentration to a lower concentration until equilibrium is reached.

What affects how quickly medication reaches the bloodstream?

Time of day taken. Level of physical activity. Level of stress. Content of stomach and PH level.

Which describes the effect of a drug that must travel through the bloodstream to affect cells or tissues in various parts of the body?

Absorption: Describes how the drug moves from the site of administration to the site of action. Distribution: Describes the journey of the drug through the bloodstream to various tissues of the body. Metabolism: Describes the process that breaks down the drug.

What effects drug absorption?

Physiologically, a drug's absorption is enhanced if there is a large surface area available for absorption (e.g. villi/microvilli of intestinal tract) and if there is a large blood supply for the drug to move down its concentration gradient.