What is the process of defining a method having same name but differ by signature?

Although a method name can be any legal identifier, code conventions restrict method names. In general, method names should be verbs and should be in mixed case, with the first letter in lowercase and the first letter of each internal word in uppercase. Here are some examples:

toString
compareTo
isDefined
setX
getX
A method name should not be the same as the class name, because constructors are named for the class. The JavaBeans architecture naming conventions further describe how to name methods for setting and getting properties.

Note:  You should refer to Sun Microsystems' code conventions for the Java programming language
What is the process of defining a method having same name but differ by signature?
and the JavaBeans architecture naming conventions outlined in the JavaBeans specification
What is the process of defining a method having same name but differ by signature?
.
Typically, a method has a unique name within its class. However, three situations might cause a method to have the same name as other methods in the class or in a superclass: overriding methods, hiding methods, and name overloading.

A method with the same signature and return type as a method in a superclass overrides or hides the superclass method. The section Overriding and Hiding Methods

What is the process of defining a method having same name but differ by signature?
describes what each means, shows you how to override and to hide methods, and discusses related issues.

The Java programming language supports name overloading for methods, which means that multiple methods in the same class can share the same name if they have different parameter lists. Suppose that you have a class that can draw various types of data (strings, integers, and so on) and that contains a method for drawing each data type. In other languages, you have to think of a new name for each method, for example, drawString, drawInteger, drawFloat, and so on. In the Java programming language, you can use the same name for all the drawing methods but pass a different type of argument to each method. Thus, the data drawing class might declare three methods named draw, each of which takes a different type of argument.

public class DataArtist {
    ...
    public void draw(String s) {
        ...
    }
    public void draw(int i) {
        ...
    }
    public void draw(float f) {
        ...
    }
}
Overloaded methods are differentiated by the number and the type of the arguments passed into the method. In the code sample, draw(String s) and draw(int i) are distinct and unique methods because they require different argument types. You cannot declare more than one method with the same name and the same number and type of arguments, because the compiler cannot tell them apart. The compiler does not consider return type when differentiating methods, so you cannot declare two methods with the same signature even if they have a different return type.

Here is an example of a typical method declaration:

public double calculateAnswer(double wingSpan, int numberOfEngines,
                              double length, double grossTons) {
    //do the calculation here
}

The only required elements of a method declaration are the method's return type, name, a pair of parentheses, (), and a body between braces, {}.

More generally, method declarations have six components, in order:

  1. Modifiers—such as public, private, and others you will learn about later.
  2. The return type—the data type of the value returned by the method, or void if the method does not return a value.
  3. The method name—the rules for field names apply to method names as well, but the convention is a little different.
  4. The parameter list in parenthesis—a comma-delimited list of input parameters, preceded by their data types, enclosed by parentheses, (). If there are no parameters, you must use empty parentheses.
  5. An exception list—to be discussed later.
  6. The method body, enclosed between braces—the method's code, including the declaration of local variables, goes here.

Modifiers, return types, and parameters will be discussed later in this lesson. Exceptions are discussed in a later lesson.


Definition: Two of the components of a method declaration comprise the method signature—the method's name and the parameter types.


The signature of the method declared above is:

calculateAnswer(double, int, double, double)

Naming a Method

Although a method name can be any legal identifier, code conventions restrict method names. By convention, method names should be a verb in lowercase or a multi-word name that begins with a verb in lowercase, followed by adjectives, nouns, etc. In multi-word names, the first letter of each of the second and following words should be capitalized. Here are some examples:

run
runFast
getBackground
getFinalData
compareTo
setX
isEmpty

Typically, a method has a unique name within its class. However, a method might have the same name as other methods due to method overloading.

Overloading Methods

The Java programming language supports overloading methods, and Java can distinguish between methods with different method signatures. This means that methods within a class can have the same name if they have different parameter lists (there are some qualifications to this that will be discussed in the lesson titled "Interfaces and Inheritance").

Suppose that you have a class that can use calligraphy to draw various types of data (strings, integers, and so on) and that contains a method for drawing each data type. It is cumbersome to use a new name for each method—for example, drawString, drawInteger, drawFloat, and so on. In the Java programming language, you can use the same name for all the drawing methods but pass a different argument list to each method. Thus, the data drawing class might declare four methods named draw, each of which has a different parameter list.

public class DataArtist {
    ...
    public void draw(String s) {
        ...
    }
    public void draw(int i) {
        ...
    }
    public void draw(double f) {
        ...
    }
    public void draw(int i, double f) {
        ...
    }
}

Overloaded methods are differentiated by the number and the type of the arguments passed into the method. In the code sample, draw(String s) and draw(int i) are distinct and unique methods because they require different argument types.

You cannot declare more than one method with the same name and the same number and type of arguments, because the compiler cannot tell them apart.

The compiler does not consider return type when differentiating methods, so you cannot declare two methods with the same signature even if they have a different return type.


Note: Overloaded methods should be used sparingly, as they can make code much less readable.


When methods have the same name and different signatures this is called?

Method overloading means two or more methods have the same name but have different parameter lists: either a different number of parameters or different types of parameters.

What is the process of defining a method in subclass having same name and signature as a method in its superclass?

Explanation: When a method in a subclass has the same name and type signatures as a method in the superclass, then the method in the subclass overrides the method in the superclass.

What is the process of defining a method in a class differentiated by method signature?

2. What is the process of defining more than one method in a class differentiated by method signature? Explanation: Function overloading is a process of defining more than one method in a class with same name differentiated by function signature i:e return type or parameters type and number.

When two methods share the same name but different method signatures?

Method overloading happens with methods with the same name but different signature.