Which is an appropriate method of initially opening the airway of an unconscious trauma patient?

After completion of the initial cardiovascular resuscitation, perform a thorough physical examination of the patient. Additional monitoring devices can be placed and laboratory tests ordered. Consider a toxicologic screen in addition to CBC, serum electrolytes, and liver function tests (LFTs). A nasogastric tube may be placed but should not be used in the patient with suspected nasal and skull base injury, in which case an orogastric tube is safer.

Evaluation of cranial and brain injuries

Evaluation for cranial and brain injuries is the next and most critical step. Obvious skull injuries or brain trauma require neurosurgical evaluation and intervention. Evaluate and address level of consciousness as measured by the Glasgow coma scale (GCS), pupillary function, and extremity weakness. The GCS is a widely accepted system evaluating eye opening, verbal response, and motor response (see below). Each category is rated on a point scale, increasing with level of response, with the sum totalling between 3 and 15. Pupillary function is judged for equality, size, and response to light. Extremity weakness can be noted in the cooperative patient or in the obtunded patient, when observed for response to painful stimulus.

Glasgow coma scale

  • Eye opening

    • Spontaneous - 4

    • To voice - 3

    • To pain - 2

    • None - 1

  • Verbal response

    • Oriented - 5

    • Confused - 4

    • Inappropriate - 3

    • Incomprehensible - 2

    • None - 1

  • Motor response

    • Obeys - 6

    • Purposeful - 5

    • Withdraws - 4

    • Flexion - 3

    • Extension - 2

    • None - 1

Brain CT scanning is essential for definitive diagnosis in the obtunded patient or in the patient in whom brain injury is suspected. Perform a full cranial nerve (CN) examination by checking for motor and sensory function of all branches. For example, identification of an immediate facial nerve deficit can determine the need and timing for surgical intervention. The systemic CN examination may be incorporated into the comprehensive head and neck examination.

Poststabilization

Once the critically or neurologically injured patient has been stabilized, perform a complete history and physical examination in a step-by-step manner. Note mechanism of injury, velocity, and any delayed injuries. If possible, question the patient for any subjective symptoms because the patient might localize pain and numbness or report diplopia, bitter nasal discharge, trismus, or malocclusion.

Starting from scalp to neck, examine the patient for step-off fractures, entry and exit wounds, or lacerations. A frontal sinus fracture may be accompanied by significant swelling and may be discovered only by radiographic examination. [4]

Orbit examination

The orbit examination is the next important step. Note diplopia, proptosis, enophthalmos, and orbital rim fractures. Suspect corneal injury in the painful eye with ciliary injection. Lack of corneal reflex can be observed with injury to the sensory division of CN V or the motor division of CN VII. A sharply demarcated red area on the sclera appears with subconjunctival hemorrhage and is often associated with orbital rim fractures. Additionally, check the lacrimal apparatus for obstruction. The pupils were assessed earlier but should be reexamined for hyphema. Loss of the red reflex may suggest a retinal detachment. Check CN II by assessing gross vision and visual fields because unilateral blindness suggests a lesion of the optic nerve. Such a lesion provides no direct or consensual response to light stimulation.

Marcus Gunn pupil

A Marcus Gunn pupil suggests a partially impaired optic nerve and is present when the impaired eye is stimulated with light, producing a weak direct and consensual response. The healthy eye is tested next, yielding a strong bilateral response. When the impaired eye then is immediately flashed, the weak eye cannot overcome the dilation effect from the strong eye now in darkness. Extraocular movements controlled by CNs III, IV, and VI can be assessed with range-of-motion testing.

Oculomotor nerve paralysis could cause ptosis, lateral eye deviation, and no light or near response. With CN IV paralysis, the eye cannot look down when turned inward. CN VI function can be tested more simply with lateral gaze testing. A forced duction test is appropriate to distinguish between nerve paralysis and muscle entrapment when orbital rim fracture is suspected. Furthermore, test the patient for nystagmus, noting its direction and field of gaze. Perform fine-cut (2 mm) CT scanning and consult an ophthalmologist for any suspicion of orbit injury.

Nasoorbitoethmoid complex

In conjunction with the orbital examination, evaluate the nasoorbitoethmoid (NOE) complex. A series of subtle observations, as well as gross physical palpation, helps diagnose NOE fractures. For example, if present, note telecanthus using a standard normal intercanthic distance of 30-34 mm. Often observed with NOE fractures, rounding of the medial canthus and overall shortening of the horizontal palpebral fissure can suggest medical canthal tendon injury.

Next, observe the nasal profile for loss of dorsum or saddle-nose deformity. Despite the possible presence of extensive edema, careful nasal palpation and examination may yield nasal bone and cartilage fractures or septal hematomas. Additionally, presentation of various odors to the patient can be used to assess CN I function. Note that copious secretions or blood may obscure the sense of smell. As observed earlier, extensive hemorrhage must be controlled. In this area, epistaxis can be controlled with either anterior or, if necessary, posterior packs. Extensive nasal bleeding may require dilation of a Foley catheter in the nasopharynx to tamponade the bleeding. If this procedure is required, monitor the patient for associated bradycardia or respiratory suppression when the catheter is placed. Persistent epistaxis may require ligation or angiography and subsequent embolization of the internal maxillary artery (or even the external carotid artery).

Skull

Do not overlook a lateral examination of the skull, starting with each ear. Perform an otologic examination to visualize hemotympanum, perforated tympanic membrane, or cerebrospinal fluid otorrhea. Examine the pinna for hematoma or laceration. A laceration of the external auditory canal, particularly of the anterior wall, could signal a condylar neck fracture. Additionally, careful palpation may reveal a lateral skull fracture. The Battle sign (ecchymosis behind the pinna) signifies a skull base fracture as well. Finally, when possible, perform a Weber and Rinne test to document hearing or hearing loss.

As the examination progresses, palpate the zygomatic arches for depression. Similarly, check the malar eminence for recession, which may be assessed in continuity with the inferior orbital rims. While examining the face, pay attention to assessing the sensory function of the trigeminal nerve branches. Additionally, the motor function of the facial nerve must be assessed as early and as accurately as possible. This information, combined with the patient's ability to generate tears ipsilaterally, can help pinpoint a facial nerve injury to a site distal to the geniculate ganglion.

Next, address the midfacial skeleton. Either a loose maxilla or a retracted mid face could indicate a Le Fort fracture. [5] Palpate the maxillary dentition and alveolar ridge for fracture and fully evaluate the oral cavity. In addition to assessment of occlusion, check the mandibular teeth for fracture, laceration, or looseness. A dental consult may be warranted. Palpate the entire mandibular body, both angles, and the ramus to the temporomandibular joint. Of note, bimanual palpation is useful for detecting mandible fractures. With a patient who can cooperate, numbness of the lower lip and gingiva can help indicate an inferior alveolar nerve injury.

Additionally, assess the motor function of the trigeminal nerve, although this may be difficult in the setting of significant edema and trauma. Check the tongue for laceration or injury. Lateral tongue deviation could indicate a CN XII injury on the side of deviation. Uvula deviation and a failure of the soft palate to rise on the injured side when asking the patient to say "ah" indicate paralysis of CN X. Finally, the parotid duct must be examined carefully, which may require cannulation to prove damage in the presence of a deep laceration along its course.

Neck

The neck is the next step in a complete otolaryngologic examination. To some extent, the neck has already been partially addressed during the initial trauma evaluation because it encases both the airway and important vascular structures. As mentioned earlier, unstable patients require immediate intervention, which may possibly include surgical neck exploration. In the more stable patient, again examine the neck for localized injury and detect any masses, pulses, hemoptysis, laryngeal architecture disruption, or crepitus. Maintain the neck in a neutral position to avoid cervical spine injury.

For all penetrating neck traumas, check the neck for entry and exit wounds. Because a clot may provide temporary hemostasis and the course of a penetrating injury is unpredictable, deep exploration of a neck wound in a nonsurgical setting is contraindicated. At most, gently examine the wound for penetration of the platysma muscle. If deep injury exists, the neck can be divided into 3 different zones with specific treatment pathways.

Although some controversy exists concerning management of penetrating neck trauma, essentially zone 1 lies below the cricoid cartilage, zone 2 lies between the cricoid cartilage and angle of the mandible, and zone 3 lies above the angle of the mandible. Because zones 1 and 2 may involve large vessels lying within either the thorax or skull base respectively, these zones may require angiography prior to further treatment. In general, most stable but symptomatic patients require formal neck exploration; thus, the otolaryngologic history and physical examination are extremely important.

The conscious patient can contribute tremendously to the neck examination. For instance, the patient may report hoarseness, dysphonia, or dysphagia. Additionally, the cooperative patient may perform a shoulder shrug, thus allowing assessment of CN XI. Other tests of CN XI, such as testing ability to turn the head, are safe only after the cervical spine is cleared from injury. Finally, in the cooperative patient with a stable airway, fiberoptic laryngoscopy can be an extremely useful diagnostic adjunct.

When opening the airway of an unconscious injured patient you should?

To open the airway, place 1 hand on the person's forehead and gently tilt their head back, lifting the tip of the chin using 2 fingers. This moves the tongue away from the back of the throat. Don't push on the floor of the mouth, as this will push the tongue upwards and obstruct the airway.

What is the preferred method for ventilating a patient?

Bag-valve-mask (BVM) ventilation is the standard method for rapidly providing rescue ventilation to patients with apnea or severe ventilatory failure.

What is the most effective method of airway management quizlet?

The best method to use when the airway is blocked by the tongue is the head-tilt, chin-lift maneuver.

When an infant is unconscious in bed what procedure should the EMT use to open the airway?

[9.9] When an infant is unconscious in​ bed, what procedure should the EMT use to open the​ airway? The​ head-tilt, chin-lift maneuver is used in all cases except when head or neck trauma is suspected.