Which of the following statements is true regarding the use of oligonucleotide primers in PCR?

  • Afonina I, Zivarts M, Kutyavin I, Lukhtanov E, Gamper H, Meyer RB. 1997. Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res 25:2657–2660.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ailenberg M, Silverman M. 2000. Controlled hot-start and improved specificity in carrying out PCR utilising touch-up and loop incorporated primers (TULIPS). Biotechniques 29:1018–1020.

    PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410.

    PubMed  CAS  Google Scholar 

  • Atamas SP, Luzina IG, Handwerger BS, White B. 1998. 5.-degenerate 3–dideoxy-terminated competitors of PCR primers increase the specificity of amplification. Biotechniques 24:445–450.

    PubMed  CAS  Google Scholar 

  • Aubele M, Smida J. 2003. Degenerate oligonucleotide primed PCR. Methods Mol Biol 226:315–318.

    PubMed  CAS  Google Scholar 

  • Ayyadevara S, Thaden JJ, Shmookler Reiss RJ. 2000. Discrimination of primer 3o-nucleotide mismatch by Taq DNA polymerase during PCR. Anal Biochem 284:11–18.

    CrossRef  PubMed  CAS  Google Scholar 

  • Baldino F, Chesselet MF, Lewis ME. 1989. High resolution in situ hybridisation histochemistry. Methods Enzymol 168:761–777.

    CrossRef  PubMed  CAS  Google Scholar 

  • Benavides GR, Hubby B, Grosse WM, McGraw RA, Tarleton RL. 1995. Construction and use of a multi competitor gene for quantitative RT-PCR using existing primer sets. J Immunol Methods 181:145–156.

    CrossRef  PubMed  CAS  Google Scholar 

  • Breslauer KJ, Frank R, Blocker H, Marky LA. 1986. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 83:3746–3750.

    CrossRef  PubMed  CAS  Google Scholar 

  • Buchanan AV, Risch GM, Robichaux M, Sherry ST, Batzer MA, Weiss KM. 2000. Long DOP PCR of rare archival anthropological samples. Hum Biol 72:911–925.

    PubMed  CAS  Google Scholar 

  • Cheng JY, Chen HH, Kao YS, Kao WC, Peck K. 2002. High throughput parallel synthesis of oligonucleotides with 1536 channel synthesiser. Nucleic Acids Res 30:e93.

    CrossRef  PubMed  Google Scholar 

  • Cheung VG, Nelson SF. 1996. Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than a nanogram of genomic DNA. Proc Natl Acad Sci USA 93:14676–14679.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dahle UR, Sandven P, Heldal E, Caugant DA. 2003. Continued low rates of transmission of Mycobacterium tuberculosis in Norway. J Clin Microbiol 41:2968–2973.

    CrossRef  PubMed  Google Scholar 

  • Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH. 1986. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83(24):9373–9377.

    CrossRef  PubMed  CAS  Google Scholar 

  • Gorelenkov V, Antipov A, Lejnine S, Daraselia N, Yuryev A. 2001. Set of novel tools for PCR primer design. Biotechniques 31:1326–1330.

    PubMed  CAS  Google Scholar 

  • Grant SF, Steinlicht S, Nentwich U, Kern R, Burwinkel B, Tolle R. 2002. SNP genotyping on a genome wide amplified DOP PCR template. Nucleic Acids Res 30:125.

    CrossRef  Google Scholar 

  • Hahn M, Wilhelm J, Pingoud A. 2001. Influence of fluorophor dye labels on the migration behaviour of PCR amplified short tandem repeats during denaturing capillary electrophoresis. Electrophoresis 22:2691–2700.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hilali F, Saulnier P, Chachaty E, Andremont A. 1997. Decontamination of PCR reagents for detection of low concentrations of 16S rRNA genes. Mol Biotechnol 7:207–216.

    CrossRef  PubMed  CAS  Google Scholar 

  • Huang Y, Kong D, Yang Y, Niu R, Shen H, Mi H. 2004. Real-time quantitative assay of telomerase activity using the duplex scorpion primer. Biotechnol Lett 26(11):891–895.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kaboev OK, Luchkina LA, Tretiakov AN, Bahrmand AR. 2000. PCR hotstart using primers with the structure of molecular beacons (hairpin-like structures). Nucleic Acids Res 28:94.

    CrossRef  Google Scholar 

  • Kämpke T, Kieninger M, Mecklenburg M. 2001. Efficient primer design algorithms. Bioinformatics 17:214–225.

    CrossRef  PubMed  Google Scholar 

  • Kapelari K, Ghanaati Z, Wollmann H, Ventz M, Ranke MB, Kofler R, Peters H. 1999. A rapid screening for steroid 21-hydroxylase mutations in patients with congenital adrenal hyperplasia. Mutations in brief no.247. Online. Hum Mutat 13:505.

    CrossRef  PubMed  CAS  Google Scholar 

  • Korganow AS, Martin T, Weber JC, Lioure B, Lutz P, Knapp AM, Pasquali JL. 1994. Molecular analysis of rearranged VH genes during B-cell chronic lymphocytic leukemia: intraclonal stability is frequent but not constant. Leuk Lymphom 14:55–69.

    CrossRef  CAS  Google Scholar 

  • Kraszewski A, Norris KE. 1987. Simple and rapid procedure for synthesis of deoxynucleoside 3´–2-cyanoethyl-N, N-diisopropyl-amino phosphites. Nucleic Acids Symp Ser 18:177–180.

    PubMed  CAS  Google Scholar 

  • Mackay IM, Arden KE, Nitsche A. 2002. Real time PCR in virology. Nucleic Acids Res 30:1292–1305.

    CrossRef  PubMed  CAS  Google Scholar 

  • Martin FH, Castro MM, Aboul-ela, Tinoco I. 1985. Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res 13:8927–8938.

    CrossRef  PubMed  CAS  Google Scholar 

  • Marota I, Basile C, Ubaldi M, Rollo F. 2002. DNA decay rate in papyri and human remains from Egyptian archaeological sites. Am J Phys Anthropol 121:109–111.

    Google Scholar 

  • Mazars GR, Theillet C. 1996. Direct sequencing by thermal asymmetric PCR. Methods Mol Biol 65:35–40.

    PubMed  CAS  Google Scholar 

  • Mitsuhashi M. 1996. Technical report: Part 2: Basic requirements for designing optimal PCR primers. J Clin Lab Anal 10:285–293.

    CrossRef  PubMed  CAS  Google Scholar 

  • Morgan GJ, Pratt G. 1998. Modern molecular diagnostics and the management of haematological malignancies. Clin Lab Haematol 20:135–141.

    CrossRef  PubMed  CAS  Google Scholar 

  • Mueller U, Muller YA, Herbst-Irmer R, Sprinzl M, Heimann U. 1999. Disorder and twin refinement of RNA heptamer double helices. Acta Crystallogr D Biol Crystallogr 55:1405–1413.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ohno H, Sakai H, Washio T, Tomita M. 2001. Preferential use of some minor codons in bacteria. Gene 276:107–115.

    CrossRef  PubMed  CAS  Google Scholar 

  • Peuschel KE. 2000. New insights into the annealing behaviour of DNA. Med Hypotheses 54:624–625.

    CrossRef  PubMed  CAS  Google Scholar 

  • Riemersma W, van der Schee C, van der Meijden W, Verbrugh H, van Belkum, A. 2003 Microbial population diversity in the urethras of healthy males and males suffering from nonchlamydial, nongonococcal urethritis. J Clin Microbiol 41(5):1977–1986.

    CrossRef  PubMed  CAS  Google Scholar 

  • Rose T. 2005. CODEHOP-mediated PCR - a powerful technique for the identification and characterization of viral genomes. Virol J 2:20.

    CrossRef  PubMed  Google Scholar 

  • Rychlik W. 1990. Selection of primers for polymerase chain reaction. Mol Biotechnol 3:129–134.

    CrossRef  Google Scholar 

  • Rychlik W, Rhoads RE. 1989. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res 11:8543–8551.

    CrossRef  Google Scholar 

  • Rychlik W, Spencer WJ, Rhoads RE. 1990. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res 11:6409–6412.

    CrossRef  Google Scholar 

  • SantaLucia J. 1998. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sayada C, Picard B, Elion J, Krishnamoorthy R. 1994. Genomic fingerprinting of Yersinia enterocolitica species by degenerate oligonucleotide primed PCR. Electrophoresis 15:562–565.

    CrossRef  PubMed  CAS  Google Scholar 

  • Shen Z, Liu J, Wells RL, Elkind MM. 2003. Direct sequencing with highly degenerate and inosine-containing primers. Methods Mol Biol 226:367–372.

    PubMed  CAS  Google Scholar 

  • Sueoka H, Nagao M, Chiba S. 2000. Rapid mutation screening of phenylketonuria by PCR-linked restriction enzyme assay and direct sequence of the phenylalanine hydroxylase gene: clinical application in Northern Japan and Northern China. Genet Test 4:249–256.

    CrossRef  PubMed  CAS  Google Scholar 

  • Thein SL et al. 1986. Human genetic diseases, a practical approach. IRL, Virginia.

    Google Scholar 

  • Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Soslow RA, Masferrer JL, Woerner BM, Koki AT, Fahey TJ. 1999. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 59:987–990.

    PubMed  CAS  Google Scholar 

  • Van Belkum A, Scherer S, Van Alphen L, Verbrugh HA. 1998. Short sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62:275–293.

    PubMed  CAS  Google Scholar 

  • Weirich G, Hornauer MA, Bruning T, Hofler H, Brauch H. 1997. Fixed archival tissue: purify DNA and primers for good PCR yield. Mol Biotechnol 8:299–301.

    CrossRef  PubMed  CAS  Google Scholar 

  • Woodward SR, King MJ, Chiu NM, Kuchar MJ, Griggs CW. 1994. Amplification of ancient nuclear DNA from teeth and soft tissues. PCR Methods Appl 3:244–247.

    PubMed  CAS  Google Scholar 

  • Zhou MY, Gomez-Sanchez CE. 2000. Universal TA cloning. Curr Issues Mol Biol 2:1–7.

    PubMed  CAS  Google Scholar 

  • Which is a true statement regarding the size of PCR products?

    Which is a true statement regarding the size of PCR products? Since the number of DNA products ending exactly between both primers increases with each cycle, when PCR is completed, the majority of products are of similar size.

    Which of the following is a list of the materials required for PCR?

    In general, a complete PCR reaction requires five basic PCR reagents; DNA/RNA template, DNA polymerase, primers (forward and reverse), deoxynucleotide triphosphates (dNTPs) and PCR buffers.

    What is not necessary for the PCR quizlet?

    Which of the following molecules is not required for a PCR reaction? Ligase is not required for a PCR reaction. The enzyme used during PCR is a thermostable DNA polymerase. The thermostability of Taq polymerase is required during the annealing phase of PCR.

    What is the most important advantage of PFU polymerase over Taq polymerase?

    What is the most important advantage of Pfu polymerase over Taq polymerase? Unlike Taq polymerase, Pfu polymerase has proofreading activity. Unlike Taq polymerase, Pfu polymerase functions well at relatively high temperatures.