Which of these resulted in the greatest shift of American workers from agriculture to industry

Top Questions

Where and when did the Industrial Revolution take place?

How did the Industrial Revolution change economies?

How did the Industrial Revolution change society?

What were some important inventions of the Industrial Revolution?

Who were some important inventors of the Industrial Revolution?

Industrial Revolution, in modern history, the process of change from an agrarian and handicraft economy to one dominated by industry and machine manufacturing. These technological changes introduced novel ways of working and living and fundamentally transformed society. This process began in Britain in the 18th century and from there spread to other parts of the world. Although used earlier by French writers, the term Industrial Revolution was first popularized by the English economic historian Arnold Toynbee (1852–83) to describe Britain’s economic development from 1760 to 1840. Since Toynbee’s time the term has been more broadly applied as a process of economic transformation than as a period of time in a particular setting. This explains why some areas, such as China and India, did not begin their first industrial revolutions until the 20th century, while others, such as the United States and western Europe, began undergoing “second” industrial revolutions by the late 19th century.

A brief treatment of the Industrial Revolution follows. For full treatment of the Industrial Revolution as it occurred in Europe, see Europe, history of: The Industrial Revolution.

Characteristics of the Industrial Revolution

The main features involved in the Industrial Revolution were technological, socioeconomic, and cultural. The technological changes included the following: (1) the use of new basic materials, chiefly iron and steel, (2) the use of new energy sources, including both fuels and motive power, such as coal, the steam engine, electricity, petroleum, and the internal-combustion engine, (3) the invention of new machines, such as the spinning jenny and the power loom that permitted increased production with a smaller expenditure of human energy, (4) a new organization of work known as the factory system, which entailed increased division of labour and specialization of function, (5) important developments in transportation and communication, including the steam locomotive, steamship, automobile, airplane, telegraph, and radio, and (6) the increasing application of science to industry. These technological changes made possible a tremendously increased use of natural resources and the mass production of manufactured goods.

There were also many new developments in nonindustrial spheres, including the following: (1) agricultural improvements that made possible the provision of food for a larger nonagricultural population, (2) economic changes that resulted in a wider distribution of wealth, the decline of land as a source of wealth in the face of rising industrial production, and increased international trade, (3) political changes reflecting the shift in economic power, as well as new state policies corresponding to the needs of an industrialized society, (4) sweeping social changes, including the growth of cities, the development of working-class movements, and the emergence of new patterns of authority, and (5) cultural transformations of a broad order. Workers acquired new and distinctive skills, and their relation to their tasks shifted; instead of being craftsmen working with hand tools, they became machine operators, subject to factory discipline. Finally, there was a psychological change: confidence in the ability to use resources and to master nature was heightened.

Which of these resulted in the greatest shift of American workers from agriculture to industry

Britannica Quiz

European History

What was the name of Franz Ferdinand’s assassin? Who was known as the Iron Chancellor? From the Irish famine to Lady Godiva, journey through European history in this quiz.

It has been said that the Industrial Revolution was the most profound revolution in human history, because of its sweeping impact on people’s daily lives. The term “industrial revolution” is a succinct catchphrase to describe a historical period, starting in 18th-century Great Britain, where the pace of change appeared to speed up. This acceleration in the processes of technical innovation brought about an array of new tools and machines. It also involved more subtle practical improvements in various fields affecting labor, production, and resource use. The word “technology” (which derives from the Greek word techne, meaning art or craft) encompasses both of these dimensions of innovation.

The technological revolution, and that sense of ever-quickening change, began much earlier than the 18th century and has continued all the way to the present day. Perhaps what was most unique about the Industrial Revolution was its merger of technology with industry. Key inventions and innovations served to shape virtually every existing sector of human activity along industrial lines, while also creating many new industries. The following are some key examples of the forces driving change.

Agriculture

Western European farming methods had been improving gradually over the centuries. Several factors came together in 18th-century Britain to bring about a substantial increase in agricultural productivity. These included new types of equipment, such as the seed drill developed by Jethro Tull around 1701. Progress was also made in crop rotation and land use, soil health, development of new crop varieties, and animal husbandry. The result was a sustained increase in yields, capable of feeding a rapidly growing population with improved nutrition. The combination of factors also brought about a shift toward large-scale commercial farming, a trend that continued into the 19th century and later. Poorer peasants had a harder time making ends meet through traditional subsistence farming. The enclosure movement, which converted common-use pasture land into private property, contributed to this trend toward market-oriented agriculture. A great many rural workers and families were forced by circumstance to migrate to the cities to become industrial laborers.

Energy

Deforestation in England had led to a shortage of wood for lumber and fuel starting in the 16th century. The country’s transition to coal as a principal energy source was more or less complete by the end of the 17th century. The mining and distribution of coal set in motion some of the dynamics that led to Britain’s industrialization. The coal-fired steam engine was in many respects the decisive technology of the Industrial Revolution.

Steam power was first applied to pump water out of coal mines. For centuries, windmills had been employed in the Netherlands for the roughly similar operation of draining low-lying flood plains. Wind was, and is, a readily available and renewable energy source, but its irregularity was considered a drawback. Water power was a more popular energy source for grinding grain and other types of mill work in most of preindustrial Europe. By the last quarter of the 18th century, however, thanks to the work of the Scottish engineer James Watt and his business partner Matthew Boulton, steam engines achieved a high level of efficiency and versatility in their design. They swiftly became the standard power supply for British, and, later, European industry. The steam engine turned the wheels of mechanized factory production. Its emergence freed manufacturers from the need to locate their factories on or near sources of water power. Large enterprises began to concentrate in rapidly growing industrial cities.

Metallurgy

In this time-honored craft, Britain’s wood shortage necessitated a switch from wood charcoal to coke, a coal product, in the smelting process. The substitute fuel eventually proved highly beneficial for iron production. Experimentation led to some other advances in metallurgical methods during the 18th century. For example, a certain type of furnace that separated the coal and kept it from contaminating the metal, and a process of “puddling” or stirring the molten iron, both made it possible to produce larger amounts of wrought iron. Wrought iron is more malleable than cast iron and therefore more suitable for fabricating machinery and other heavy industrial applications.

Textiles

The production of fabrics, especially cotton, was fundamental to Britain’s economic development between 1750 and 1850. Those are the years historians commonly use to bracket the Industrial Revolution. In this period, the organization of cotton production shifted from a small-scale cottage industry, in which rural families performed spinning and weaving tasks in their homes, to a large, mechanized, factory-based industry. The boom in productivity began with a few technical devices, including the spinning jenny, spinning mule, and power loom. First human, then water, and finally steam power were applied to operate power looms, carding machines, and other specialized equipment. Another well-known innovation was the cotton gin, invented in the United States in 1793. This device spurred an increase in cotton cultivation and export from U.S. slave states, a key British supplier.

Chemicals

This industry arose partly in response to the demand for improved bleaching solutions for cotton and other manufactured textiles. Other chemical research was motivated by the quest for artificial dyes, explosives, solvents, fertilizers, and medicines, including pharmaceuticals. In the second half of the 19th century, Germany became the world’s leader in industrial chemistry.

Transportation

Concurrent with the increased output of agricultural produce and manufactured goods arose the need for more efficient means of delivering these products to market. The first efforts toward this end in Europe involved constructing improved overland roads. Canals were dug in both Europe and North America to create maritime corridors between existing waterways. Steam engines were recognized as useful in locomotion, resulting in the emergence of the steamboat in the early 19th century. High-pressure steam engines also powered railroad locomotives, which operated in Britain after 1825. Railways spread rapidly across Europe and North America, extending to Asia in the latter half of the 19th century. Railroads became one of the world’s leading industries as they expanded the frontiers of industrial society.

In what ways did new technology impact American business and agriculture from 1790 1850?

new tech and transportation revolutionized business and agriculture completely. It was not only easier to transport goods, but the manufacturing/harvesting processes were significantly faster and more efficient. More goods could be produced and they could be cheaper, as a result from cheap transportation.

When did the South began to industrialize on a large scale?

Some low wage industries (such as textiles) began to move to the South in significant numbers after 1900, and the emergence of industries based on high technology after 1950 led to new manufacturing concentrations which rested on different technologies.