What type of processing is thought to occur during the feedback delay interval?

References

  • Adams, J. A. (1968). Response feedback and learning. Psychological Bulletin, 70(6), 486–504. doi:10.1037/H0026741.

    Article  Google Scholar 

  • Adams, J. A. (1971). Closed-loop theory of motor learning. Journal of Motor Behavior, 3(2), 111–150.

    Article  PubMed  Google Scholar 

  • Aiken, C. A., Fairbrother, J. T., & Post, P. G. (2012). The effects of self-controlled video feedback on the learning of the basketball set shot. Frontiers in Psychology, 3, 338. doi:10.3389/fpsyg.2012.00338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter, M. J., Carlsen, A. N., & Ste-Marie, D. M. (2014). Self-controlled feedback is effective if it is based on the learner’s performance: a replication and extension of Chiviacowsky and Wulf (2005). Frontiers in Psychology, 5, 1325. doi:10.3389/fpsyg.2014.01325.

    PubMed  PubMed Central  Google Scholar 

  • Carter, M. J., & Patterson, J. T. (2012). Self-controlled knowledge of results: age-related differences in motor learning, strategies, and error detection. Human Movement Science, 31(6), 1459–1472. doi:10.1016/j.humov.2012.07.008.

    Article  PubMed  Google Scholar 

  • Carter, M. J., Rathwell, S., & Ste-Marie, D. M. (2015). Motor skill retention is modulated by strategy choice during self-controlled knowledge of results schedules. Journal of Motor Learning and Development. (accepted).

  • Chiviacowsky, S. (2014). Self-controlled practice: autonomy protects perceptions of competence and enhances motor learning. Psychology of Sport and Exercise, 15(5), 505–510. doi:10.1016/j.psychsport.2014.05.003.

    Article  Google Scholar 

  • Chiviacowsky, S., & Wulf, G. (2002). Self-controlled feedback: does it enhance learning because performers get feedback when they need it? Research Quarterly for Exercise and Sport, 73(4), 408–415.

    Article  PubMed  Google Scholar 

  • Chiviacowsky, S., & Wulf, G. (2005). Self-controlled feedback is effective if it is based on the learner’s performance. Research Quarterly for Exercise and Sport, 76(1), 42–48.

    Article  PubMed  Google Scholar 

  • Goh, H. T., Sullivan, K. J., Gordon, J., Wulf, G., & Winstein, C. J. (2012). Dual-task practice enhances motor learning: a preliminary investigation. Experimental Brain Research, 222(3), 201–210. doi:10.1007/s00221-012-3206-5.

    Article  PubMed  Google Scholar 

  • Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224. doi:10.3200/Jmbr.36.2.212-224.

    Article  PubMed  Google Scholar 

  • Kantak, S. S., Sullivan, K. J., Fisher, B. E., Knowlton, B. J., & Winstein, C. J. (2010). Neural substrates of motor memory consolidation depend on practice structure. Nature Neuroscience, 13(8), 923–925. doi:10.1038/Nn.2596.

    Article  PubMed  Google Scholar 

  • Kantak, S. S., & Winstein, C. J. (2012). Learning-performance distinction and memory processes for motor skills: a focused review and perspective. Behavioural Brain Research, 228(1), 219–231. doi:10.1016/j.bbr.2011.11.028.

    Article  PubMed  Google Scholar 

  • Kovacs, A. J., Boyle, J., Grutmatcher, N., & Shea, C. H. (2010). Coding of on-line and pre-planned movement sequences. Acta Psychologica, 133(2), 119–126. doi:10.1016/j.actpsy.2009.10.007.

    Article  PubMed  Google Scholar 

  • Laughlin, D. D., Fairbrother, J. T., Wrisberg, C. A., Alami, A., Fisher, L. A., & Huck, S. W. (2015). Self-control behaviors during the learning of a cascade juggling task. Human Movement Science, 41, 9–19. doi:10.1016/j.humov.2015.02.002.

    Article  PubMed  Google Scholar 

  • Lee, T. D., Wulf, G., Winstein, C. J., & Zelaznik, H. N. (2016). In Memoriam: Richard Allen Schmidt (1941–2015). Journal of Motor Behavior, 48(1), 1–4. doi:10.1080/00222895.2016.1124687.

    Article  PubMed  Google Scholar 

  • Leinen, P., Shea, C. H., & Panzer, S. (2015). The impact of concurrent visual feedback on coding of on-line and pre-planned movement sequences. Acta Psychologica, 155, 92–100. doi:10.1016/j.actpsy.2014.12.005.

    Article  PubMed  Google Scholar 

  • Lewthwaite, R., Chiviacowsky, S., Drews, R., & Wulf, G. (2015). Choose to move: the motivational impact of autonomy support on motor learning. Psychonomic Bulletin & Review,. doi:10.3758/s13423-015-0814-7.

    Google Scholar 

  • Lewthwaite, R., & Wulf, G. (2010). Grand challenge for movement science and sport psychology: embracing the social-cognitive-affective-motor nature of motor behavior. Frontiers in Psychology, 1, 42. doi:10.3389/fpsyg.2010.00042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, C. H., Fisher, B. E., Winstein, C. J., Wu, A. D., & Gordon, J. (2008). Contextual interference effect: elaborative processing or forgetting-reconstruction? A post hoc analysis of transcranial magnetic stimulation-induced effects on motor learning. Journal of Motor Behavior, 40(6), 578–586. doi:10.3200/Jmbr.40.6.578-586.

    Article  PubMed  Google Scholar 

  • Lin, C. H., Winstein, C. J., Fisher, B. E., & Wu, A. D. (2010). Neural correlates of the contextual interference effect in motor learning: a transcranial magnetic stimulation investigation. Journal of Motor Behavior, 42(4), 223–232.

    Article  PubMed  Google Scholar 

  • Marteniuk, R. G. (1976). Information processing in motor skills. New York: Holt, Rinehart, and Winston.

    Google Scholar 

  • Marteniuk, R. G. (1986). Information processes in movement learning: capacity and structural interference effects. Journal of Motor Behavior, 18(1), 55–75.

    Article  PubMed  Google Scholar 

  • Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi:10.1016/0028-3932(71)90067-4.

    Article  PubMed  Google Scholar 

  • Panzer, S., Krueger, M., Muehlbauer, T., Kovacs, A. J., & Shea, C. H. (2009). Inter-manual transfer and practice: coding of simple motor sequences. Acta Psychologica, 131(2), 99–109. doi:10.1016/j.actpsy.2009.03.004.

    Article  PubMed  Google Scholar 

  • Patterson, J. T., & Carter, M. (2010). Learner regulated knowledge of results during the acquisition of multiple timing goals. Human Movement Science, 29(2), 214–227. doi:10.1016/j.humov.2009.12.003.

    Article  PubMed  Google Scholar 

  • Patterson, J. T., Carter, M., & Sanli, E. (2011). Decreasing the proportion of self-control trials during the acquisition period does not compromise the learning advantages in a self-controlled context. Research Quarterly for Exercise and Sport, 82(4), 624–633.

    Article  PubMed  Google Scholar 

  • Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor learning: a review and critical reappraisal. Psychological Bulletin, 95(3), 355–386. doi:10.1037//0033-2909.95.3.355.

    Article  PubMed  Google Scholar 

  • Sanli, E. A., Patterson, J. T., Bray, S. R., & Lee, T. D. (2013). Understanding self-controlled motor learning protocols through the self-determination theory. Frontiers in Psychology, 3, 611. doi:10.3389/fpsyg.2012.00611.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt, R. A. (1975a). Motor skills. New York: Harper and Row.

    Google Scholar 

  • Schmidt, R. A. (1975b). Schema theory of discrete motor skill learning. Psychological Review, 82(4), 225–260. doi:10.1037/H0076770.

    Article  Google Scholar 

  • Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: a behavioral emphasis (5th ed.). Champaign: Human Kinetics.

    Google Scholar 

  • Schmidt, R. A., & Young, D. E. (1991). Methodology for motor learning: a paradigm for kinematic feedback. Journal of Motor Behavior, 23(1), 13–24.

    Article  PubMed  Google Scholar 

  • Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381. doi:10.1007/s00221-008-1280-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108. doi:10.1146/annurev-neuro-060909-153135.

    Article  PubMed  Google Scholar 

  • Swinnen, S. P. (1988). Post-performance activities and skill learning. In O. G. Meijer & K. Roth (Eds.), Complex motor behaviour: the motor-action controversy (pp. 315–338). North Holland: Elsevier Science Publishers B.V.

    Chapter  Google Scholar 

  • Swinnen, S. P. (1990). Interpolated activities during the knowledge-of-results delay and post knowledge-of-results interval—effects on performance and learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 692–705. doi:10.1037//0278-7393.16.4.692.

    Google Scholar 

  • Swinnen, S. P. (1996). Information feedback for motor skill learning: a review. In H. N. Zelaznik (Ed.), Advances in motor learning and control (pp. 37–66). Champaign: Human Kinetics.

    Google Scholar 

  • Swinnen, S. P., Nicholson, D. E., Schmidt, R. A., & Shapiro, D. C. (1990). Information feedback for skill acquisition: instantaneous knowledge of results degrades learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 706–716. doi:10.1037/0278-7393.16.4.706.

    Google Scholar 

  • Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12(12), 739–751. doi:10.1038/nrn3112.

    PubMed  Google Scholar 

  • Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.

    Article  PubMed  Google Scholar 

  • Wulf, G., Schmidt, R. A., & Deubel, H. (1993). Reduced feedback frequency enhances generalized motor program learning but not parameterization learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(5), 1134–1150.

    PubMed  Google Scholar 

Download references

What is feedback

the feedback-delay interval. The interval of time from the end of one performance attempt to the beginning of the next is known as: -the feedback-delay interval. -the inter-trial interval.

What are the types of feedback motor learning?

Feedback information can be intrinsic (sensory), if it comes from movement production within the body, and/or extrinsic (augmented), if it is provided by sources outside the body and supplements intrinsic feedback [1].

What are the 2 types of augmented feedback?

Augmented feedback can be classified into two types: knowledge of results (KR) and knowledge of performance (KP). KR refers to feedback about the outcome of a movement, such as the score in a game of darts.

Which of the following can be used as a source of performance feedback?

Which of the following can be used as a source of performance feedback? Equipment, Videotape, Graphs, Consequent sounds, All of the above can be used as a source of performance feedback. The interval of time from one performance attempt until augmented feedback is provided is called: the feedback-delay interval.